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Today

Lecture
• Hamilton, Lawrence C. 2008. A Low-Tech 

Guide to Causal Modelling.  
http://pubpages.unh.edu/~lch/causal2.pdf

• Principal components and factor analysis 
– Hamilton Ch 8 p249-282

• Also see:
Winship, Chrisopher, and Stephen L. Morgan 1999 “The Estimation
of Causal Effects from Observational Data”, Annual Review of
Sociology Vol 25: 659-707
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Causal analysis

• Experiment

– Randomized causal impacts (”treatment”) 
provide precise causal conclusions about effects 
(”response”) if there is significant differences in 
means

– This can be impossible to achieve due to 
• Practical conditions

• Economic constraints

• Ethical judgements

• Instead one tries to obtain quasi-experiments
– Using for example regression analysis
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Model of causal effects Ref.:

• Research using observations utilize 
concepts from experimental design

– “Treatment”, “Stimulus”

– “Effect”, “Outcome”

Ref.: 

Winship, Chrisopher, and Stephen L. Morgan 1999 “The Estimation 
of Causal Effects from Observational Data”, Annual Review of 
Sociology Vol 25: 659-707
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Experiments allocate ”cases”
randomly to one of two groups:

• TREATMENT (T)

with observation
– before treatment

– after treatment

• CONTROLL (C) 

with observation
– before non-treatment

– after non-treatment
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The counterfactual hypothesis for the 
study of causality

• Individual “i” can a priori be assumed 
selected for one of two groups
– Treatment group, T, or control group, C.

• Treatment, t, as well as non-treatment, c, 
can a priori be given to individuals both in 
the T- and C-group

• In reality we are able to observe t only in 
the T-group and c in the C-group
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Modelling of causal effects:
The counterfactual hypothesis (1)

• There are for each individual ”i” four possible 
outcomes
– Yi(c,C) or Yi(t,C); if allocated to a control group

– Yi(c,T) or Yi(t,T) ; if allocated to a treatment group 

– Only Yi(c, given that ”i” is a member of C) or 

– Yi(t, given that ”i” is a member of T) can be 
observed for any particular individual
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Modelling of causal effects:
The counterfactual hypothesis (2)

More formally one may write the possible 
outcomes for person no i:

 Treatment: t Non-treat.: c
T-group Yt

i  T Yc
i  T 

C-group Yt
i  C Yc

i  C 
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Modelling of causal effects:
The counterfactual hypothesis (3)

• Then the causal effect for individual i is

• i = Yi (t) - Yi (c)

• Only one of these two quantities can be 
observed for any given individual

• This leads to the “counterfactual 
hypothesis”
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The counterfactual hypothesis: 
concluding

• “The main value of this counterfactual 
framework is that causal inference can be 
summarized by a single question: Given 
that the i cannot be calculated for any 
individual and therefore that Yt

i and Yc
i can 

be observed only on mutually exclusive 
subsets of the population, what can be 
inferred about the distribution of the i from 
an analysis of Yi and Ti ?” (Winship and 
Morgan 1999:664)
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Modelling of causal effects: from individual 

effects to population averages

• We can observe 
Yi (c |iC), but not Yi (t |iC) 

• The problem may be called a problem of 
missing data

• Instead of individual effects we can 
estimate average effects for the total 
population
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Modelling of causal effects (1)

• Average effects can be estimated, but 
usually it involves difficulties

• One assumption is that the effect of the 
treatment will be the same for any given 
individual independent of which group the 
individual is allocated to

• This, however, is not self-evident 
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Modelling of causal effects (2)

The counterfactual hypothesis assumes: 

• That changing the treatment group for one 
individual do not affect the outcome of 
other individuals (no interaction)

• That treatment in reality can be 
manipulated (e.g. sex can not be 
manipulated) 
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Modelling of causal effects (3)

• One problem is that in a sample the 
process of allocating person no i to a 
control or treatment group may affect 
the estimated average effect (the 
problem of selection)

• In some cases, however, the interesting 
quantity is the average effect for those 
who actually receive the treatment
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Modelling of causal effects (4)

• It can be shown that there are two 
sources of bias for the estimates of the 
average effect 

1. An established difference between the 
C- and T- groups

2. The treatment works in principle 
differently for those allocated to the T-
group compared to those in the C-group

– To counteract this one has to develop 
models of how people get into C- and T-
groups (selection models)
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Modelling of causal effects (5)

• A general class of methods that may be 
used to estimate causal effects are the 
regression models

• These are able to “control for”
observable differences between the C-
and T- groups, but not for unequal 
response to treatment 
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Causal modelling

• “path analysis” or “structural equations 
modelling” go back to the 60ies 

• Jöerskog and Sörbom: LISREL
– Use maximum likelihood to estimate model 

parameters maximising fit to the variance-
covariance matrix

– Commonly available in statistical packages 
• Covariance structural modelling
• Structural equation modelling
• Full information maximum likelihood estimation
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Low-Tech approach

• Uses OLS to do simple versions of the structural 
equations models

• The key assumption is the causal ordering of 
variables. In survey data this ordering is 
supplied by theory

• The causal diagram visualize the order of 
causation:
– Causality flows from left to right 
– Intervening variables give rise to indirect effects
– “reverse causation” creates problems
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Low-Tech causal modelling
Figure 1
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Multiple regression as a causal model
Figure 2
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Quantities in the diagram

Is an estimate of unmeasured 
influences called error term or 
disturbance

√{1-RY.123
2}

Coefficient of determination R2 from 
the regression of Y on X1, X2, X3

RY.123
2

Usually a standardized regression 
coefficient (“beta weight”) taken from 
the regression of Y on X1, and “.”
means controlled for X2, X3

bY1.23, etc. 

Pearson correlations among x-
variables

r12, r13, r23
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Multiple regression

• All assumptions and all problems apply as 
before
– Note in particular that error terms must be 

uncorrelated with included x-variables (no 
relevant variable has been omitted) 

• If some of the X-es are intervening in 
figure 2 the model is too simple, but it 
matters only if we are interested in 
causality 
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Path coefficients 
Figure 3
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New elements in figure 3

The error term from the regression of 
X3 on X1 and X2

√{1-R3.12
2}

Coefficient of determination (R2) from 
the regression of X3 on X1 and X2

R3.12
2

Standardized regression coefficients 
(“beta weight”) from the regression of 
X3 on X1 controlled for X2 and from the 
regression of X3 on X2 controlled for X1

b31.2, b32.1
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The structural model of figure 3

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• X3 = b31.2X1 + b32.1X2

• In structural equations variables and 
coefficients are standardized

• That means that variables have an average 
of 0 and a standard deviation of 1 and that 
coefficients vary between -1 and +1

^
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Figure 5: the regression of X3 on X1 and X2
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Direct, Indirect and Total Effects

• Indirect effects equal the product of 
coefficients along any series of causal 
paths that link one variable to another 

• Total effects equal the sum of all direct 
and indirect effects linking two variables
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Indirect effects as products of path coefficients

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• X3 = b31.2X1 + b32.1X2

• Means that we have

• Ŷ = bY1.23X1 + bY2.13X2 + bY3.12X3

• = bY1.23X1 + bY2.13X2 + bY3.12(b31.2X1 + b32.1X2) 

• = bY1.23X1 + bY2.13X2 + bY3.12b31.2X1 + bY3.12b32.1X2

• = (bY1.23 + bY3.12b31.2)X1 + (bY2.13 + bY3.12b32.1)X2

• Compare compound coefficients to the diagram

^

^
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Structural model

Fall 2009 © Erling Berge 2009 30

Path Coefficients
• X1 to Y: bY1.23 (regression coefficient of Y on X1, 

controlling for X2 and X3)
• X2 to Y: bY2.13 (regression coefficient of Y on X2, 

controlling for X1 and X3)
• X3 to Y: bY3.12 (regression coefficient of Y on X3, 

controlling for X1 and X2) 
• X1 to X3: b31.2 (regression coefficient of X3 on X1, 

controlling for X2)
• X2 to X3: b32.1 (regression coefficient of X3 on X2, 

controlling for X1)
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Direct effects

regression coefficient of X3 on X2, 
controlling for X1

X2 to X3: b32.1

regression coefficient of X3 on X1, 
controlling for X2

X1 to X3: b31.2

regression coefficient of Y on X3, 
controlling for X1 and X2

X3 to Y: bY3.12

regression coefficient of Y on X2, 
controlling for X1 and X3

X2 to Y: bY2.13

regression coefficient of Y on X1, 
controlling for X2 and X3

X1 to Y: bY1.23
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Indirect and total effects

bY2.13 + (b32.1 × bY3.12)X2 to Y:

bY1.23 + (b31.2 × bY3.12)X1 to Y:

Total effects

b32.1 × bY3.12X2 to Y, through X3:

b31.2 × bY3.12X1 to Y, through X3:

Indirect effects
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Additions to multiple regressions

• We learn something new if the indirect 
effects are large enough to have 
substantial interest

• More than two steps of causation tends to 
become very weak
– 0.3*0.3*0.3 = 0.027 

– 0.3 standard deviation change in causal 
variables leads to a 0.027 standard deviation 
change in the dependent variable
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Variables and measurement

• All interval scale variables used in multiple regression 
(including non-linear transformed variables and 
interaction terms) can be included in structural equations 
models

• But interpretation becomes tricky when variables are 
complex. Conditional effect plots are very useful

• Robust, quantile, logit, and probit regression should not 
be used

• Categorical variables should not be used as intervening 
variables

• Scales or index variables can be used as usual in OLS 
regression
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Concluding on structural equations modelling

• Including factors from factor analysis as explanatory 
variables make it possible to approximate a LISREL type 
analysis

• If assumptions are true LISREL will perform a much 
better and more comprehensive estimation, but too often 
assumptions are not true then the low-tech approach has 
access to the large toolkit of OLS regression for 
diagnostics and exploratory methods testing basic 
assumptions and discovering unusual data points

• Simple diagnostic work sometimes yields the most 
unexpected, interesting and replicable findings from our 
research
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Principal components and factor analysis

• Principal components and factor analysis 
are both methods for data reduction

• They seek underlying dimensions that are 
able to account for the pattern of variation 
among a set of observed variables

• Principal components analysis is a 
transformation of the observed data where 
the idea is to explain as much as possible 
of the observed variation with a minimum 
number of components
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Factor analysis

• Estimates coefficients on - and values of -
unobserved variables (Factors) to explain the 
co-variation among an observed set of variables

• The assumption is that a small set of the 
unobserved factors are able to explain most of 
the co-variation

• Hence factor analysis can be used for data 
reduction. Many variables can be replaced by a 
few factors
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Factor analysis
• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ + uk

– k = 1, 2, 3, … , K 

• Symbols 
– K observed variables, Zk ; k=1, 2, 3, … , K
– J unobserved factors, Fj ; j=1, 2, 3, … , J where J<K

– For each variable there is a unique error term, uk, also 
called unique factors while the F factors are called 
common factors

– For each factor there is a standardized regression 
coefficient, lkj, also called factor loading; k refers to 
variable no, j refers to factor no. An index denoting 
case no has been omitted here. 



Ref.: 
http://www.svt.ntnu.no/iss/Erling.Berge/

Fall 2009

© Erling Berge 2009 20

Fall 2009 © Erling Berge 2009 39

Correlation of factors

• Factors my be correlated or uncorrelated
– Uncorrelated: they are then called orthogonal

– Correlated: they are then called oblique

• Factors may be rotated
– Oblique rotations create correlated factors

– Orthogonal rotations create uncorrelated 
factors
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Principal components

• Represents a simple transformation of variables. There 
are as many principal components as there are variables

• Principal components are uncorrelated 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkKFK

• If the last few principal components explain little variation 
we can retain J<K components. Thus Principal 
Components also can be used to reduce data. 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ +  vk

where J<K and
the residual vk has small variance and consist of the 
discarded principal components 
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Principal components vs factor analysis
• Principal components analysis attempts to 

explain the observed variation of the variables
• Factor analysis attempts to explain their 

intercorrelations
• Use principal components to generate a 

composite variable that reproduce the maximum 
variance  of observed variables

• Use factor analysis to model relationships 
between observed variables and unobserved 
latent variables and to obtain estimates of latent 
variable values 

• The choice between the two is often blurred, to 
some degree it is a matter of taste
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The number of principal components
• K variables yield K principal components
• If the first few components account for most of the 

variation, we can concentrate on them and discard the 
remaining 

• The eigenvalues of the standardized correlation matrix 
provides a guide here 

• Components are raked according to eigenvalues
• A principal component with an eigenvalue <1 accounts 

for less variance than a single variable
• Thus we discard components with eigenvalues below 1 
• Another criterion for keeping components is that each 

component should have substantive meaning
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Eigenvalues and explained variance

• In a covariance matrix the sum of eigenvalues
equals the sum of variances. 

• In a correlation matrix this = K (the number of 
variables) since each standardized variable has 
a variance of 1 

• Thus the sum of eigenvalues of the principal 
components 

• 1 + 2 + 3 + … + K = K and 

• j / K = proportion of variance explained by 
component no j
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Uniqueness and communality

• If K-J components are discarded and we have 
only J factors 

• Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkJFJ +  vk

• And an error term vk

• The variance of the error term is called the 
uniqueness of the variable 

• Communality is the proportion of a variable’s 
variance shared with the components

• Communality = hk
2 = 1 - Uniqueness = j kj

2 , 
j=1,…, J ; k = variable number
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Rotation to simple structure

• The idea is to transform (rotate) the factors so 
that the loadings on each components make it 
easier to interpret the meaning of the component

• If the loading are close either to 1 or -1 on one 
factor and close to 0 on all others the structure is 
simpler to interpret: we rotate to “simple 
structure”. The rotated factors fit data equally 
well but are simpler to interpret

• Rotations may be
– Orthogonal  (method typically: varimax)
– Oblique        (method typically: oblimin, promax)
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Why rotate?

• Underlying unobserved dimensions may in 
theory be seen as correlated

• Allowing correlated factors may provide 
even simpler structure than uncorrelated 
factors, thus easier to interpret

• All rotations fit data equally well
• Hence the one chosen depends on a 

series of choices done by the analyst
• Try different methods to see if results differ
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SPSS output
• For rotated factor solutions with correlated 

factors SPSS provides two matrixes for 
interpretation

• The pattern matrix provides the direct regression 
of the variables on the factors. The coefficients 
tells about the direct contribution of a factor in 
explaining the variance of a variable. Due to the 
correlations of the factors there are also indirect 
contributions 

• The structure matrix provides the correlations 
between the variables and the factors
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Factor scores
• Both principal components and factor analysis 

may be used to compute composite scores 
called factor scores 

• Recall that variables and factors are assumed to 
be related like
– Zk = lk1F1 + lk2F2 + … + lkjFj + … + lkKFK

• Then it is possible to find values cij making 
– Fj = c1jZ1 + c2jZ2 + … + ckjZj + … + cKjZK

• The coefficients cij are the factor score 
coefficients. They come from the regression of 
the factor Fj on the variables 

ˆ
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Methods for extracting factors

• Principal factor analysis
– The original correlation matrix R is replaced by R*

where the original 1-values of the diagonal has been 
replaced by estimates of the communality (the shared 
variance)

– The factors extracted tries to explain the co-variance 
or correlations among the variables. 

– The unexplained variance is attributed to a unique 
factor (error term). The uniqueness may reflect 
measurement error or something that this variable 
measure that no other variable measure

– The most common estimate of communality is Rk
2 the 

coefficient of determination from the regression of Zk
on all other variables
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How many factor should we retain?

• In principal component analysis factors with 
eigenvalues above 1 is recommended

• In principal factor analysis factors with 
eigenvalues above 0 is recommended

• Procedure:
– Extract initial factors or components

– Rotate to simple structure

– Decide on how many factors to retain

– Obtain and use scores for the retained factors, 
ignoring discarded factors
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Concluding (1)

• Principal components
– transformation of the data, not model based. 

Appropriate if goal is to compactly express 
most of the variance of k variables. Minor 
components (perhaps all except the first) may 
be discarded and viewed as a residual. 

• Factor analysis
– Estimates parameters of a measurement 

model with latent (unobserved) variables. 
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Concluding (2)
• Types of factor analysis

– Principal factoring – principal components of a 
modified correlation matrix R* in which 
communality estimates (Rk

2) replace one’s on 
the main diagonal

• Principal factoring without iteration
• Principal factoring with iteration

– Maximum likelihood estimation – significance 
tests regarding number of factors and other 
hypotheses, assuming multivariate 
normality
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Concluding (3)

• Rotation 
– If we retain more than one factor rotation simplifies 

structure and improves interpretability
• Orthogonal rotation (varimax) maximum polarization given 

uncorrelated factors 
• Oblique rotation (oblimin, promax) further polarization by 

permitting interfactor correlations. The results may be more 
interpretable and more realistic than uncorrelated factors

• Scores 
– Factor scores can be calculated for use in graphs and 

further analysis, based on rotated or unrotated factors 
and principal components 
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Concluding (4)

• Factor analysis is based on correlations 
and hence as affected by non-linearities
and influential cases as in regression
– Use scatter plots to check for outliers and 

non-linearities

– In maximum likelihood estimation this 
becomes even more important since it 
assumes multivariate normality making it even 
less robust than principal factors 
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Principal components of trust in 
Malawi

• Survey of 283 households in 18 villages in 
Malawi, 2007

• There are 8 related questions asked in 
one group

• Are there 1, 2 or more underlying 
dimensions shaping the attitudes 
expressed?

• The questions: 
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M3 Would you say you trust all, most, some or just a 
few people in the following groups? (All=1 – None=5)

Do not 
know

NoneOnly a 
few

SomeMostAllPeople not from same church/mosqueh

Do not 
know

NoneOnly a 
few

SomeMostAllPeople from same church/mosqueg

Do not 
know

NoneOnly a 
few

SomeMostAllPeople from outside ethnic groupf

Do not 
know

NoneOnly a 
few

SomeMostAllPeople of same ethnic groupe

Do not 
know

NoneOnly a 
few

SomeMostAllPeople from outside the villaged

Do not 
know

NoneOnly a 
few

SomeMostAllYour villagec

Do not 
know

NoneOnly a 
few

SomeMostAllYour relativesb

Do not 
know

NoneOnly a 
few

SomeMostAllYour family membersa
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Trust in Malawi: descriptive
Descriptive Statistics

1.60 .935 266

2.12 1.136 266

2.69 1.090 266

3.28 1.118 266

2.90 1.082 266

3.26 1.098 266

2.39 1.062 266

3.02 1.197 266

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

Mean Std. Deviation Analysis N
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Trust in Malawi: correlation of variables

Correlation Matrix

1.000 .500 .416 .236 .370 .316 .422 .305

.500 1.000 .496 .315 .363 .353 .424 .292

.416 .496 1.000 .482 .588 .573 .465 .430

.236 .315 .482 1.000 .526 .610 .233 .469

.370 .363 .588 .526 1.000 .702 .504 .643

.316 .353 .573 .610 .702 1.000 .430 .618

.422 .424 .465 .233 .504 .430 1.000 .536

.305 .292 .430 .469 .643 .618 .536 1.000

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people fr
same church/mosque

M3.h. Trust in people n
from same
church/mosque

M3.a. Trust
in family
members

M3.b. Trust
in relatives

M3.c. Trust
in people in
own village

M3.d. Trust
in people
outside the
village

M3.e. Trust
in people of
same ethnic
group

M3.f. Trust i
people
outside
ethnic group

M3.g. Trust
in people
from same
church/mos
que

M3.h. Trust
in people not
from same
church/mosq
ue
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Trust in Malawi: number of factors
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Trust in Malawi: factor/ component matrix
Component Matrix a

.588 .586

.624 .532

.776 .080

.675 -.398

.832 -.221

.816 -.330

.690 .265

.757 -.262

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

1 2

Component

Extraction Method: Principal Component Analysis.

2 components extracted.a. 
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Trust in Malawi: orthogonal factors

.246.762-.262.757
M3.h. Trust in people not from same 

church/mosque

.627.391.265.690M3.g. Trust in people from same church/mosque

.228.850-.330.816M3.f. Trust in people outside ethnic group

.324.798-.221.832M3.e. Trust in people of same ethnic group

.089.779-.398.675M3.d. Trust in people outside the village

.531.572.080.776M3.c. Trust in people in own village

.800.178.532.624M3.b. Trust in relatives

.821.117.586.588M3.a. Trust in family members

F2F1F2F1Variables

Orthogonal 
varimax

Unrotated
components 

Rotated component matrix
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Trust in Malawi: communalities
Communalities

.689

.671

.609

.614

.741

.774

.546

.641

M3.a. Trust in family
members

M3.b. Trust in relatives

M3.c. Trust in people in
own village

M3.d. Trust in people
outside the village

M3.e. Trust in people of
same ethnic group

M3.f. Trust in people
outside ethnic group

M3.g. Trust in people from
same church/mosque

M3.h. Trust in people not
from same
church/mosque

Extraction

Extraction Method: Principal Component Analysis.
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Trust in Malawi: explained variance

Total Variance Explained

4.199 52.487 52.487 3.071 38.387 38.387

1.087 13.582 66.069 2.215 27.681 66.069

Component
1

2

Total % of VarianceCumulative % Total % of VarianceCumulative %

Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Trust in Malawi: oblique factors pattern matrix

.016.792.045.779.246.762
M3.h. Trust in people not from same 

church/mosque

.582.237.573.268.627.391
M3.g. Trust in people from same 

church/mosque

-.036.899-.001.881.228.850
M3.f. Trust in people outside ethnic 

group

.093.806.120.797.324.798
M3.e. Trust in people of same ethnic 

group

-.170.864-.133.838.089.779
M3.d. Trust in people outside the 

village

.409.476.414.493.531.572M3.c. Trust in people in own village

.855-.067.826-.014.800.178M3.b. Trust in relatives

.901-.145.868-.087.821.117M3.a. Trust in family members

F2F1F2F1F2F1Variables

promaxobliminvarimax
(orthogonal)

Rotated component matrix
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.452.801.416.800.246.762
M3.h. Trust in people not from same 

church/mosque

.712.557.700.541.627.391
M3.g. Trust in people from same 

church/mosque

.460.880.419.880.228.850
M3.f. Trust in people outside ethnic 

group

.537.857.500.854.324.798
M3.e. Trust in people of same ethnic 

group

.306.771.267.775.089.779
M3.d. Trust in people outside the 

village

.671.702.649.690.531.572M3.c. Trust in people in own village

.817.403.819.380.800.178M3.b. Trust in relatives

.821.351.826.327.821.117M3.a. Trust in family members

F2F1F2F1F2F1Variables

promaxobliminvarimaxRotated component matrix

Trust in Malawi: oblique factors structure matrix
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Trust in Malawi: correlation of components

Component Correlation Matrix

1.000 .477

.477 1.000

Component
1

2

1 2

Extraction Method: Principal Component Analysis.  
Rotation Method: Oblimin with Kaiser Normalization.
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Trust in Malawi: variables in component plot
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Trust in Malawi: Orthogonal Factor 1 by district
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Trust in Malawi: Orthogonal Factor 2 by district
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Trust in Malawi: Orthogonal factors by district


